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ABSTRACT   

Forbes introduced the usage of Gaussian quadratures in optical design for circular pupils and fields, and for a specific 
visible wavelength band.  In this paper, Gaussian quadrature methods of selecting rays in ray-tracing are derived for non-
circular pupil shapes, such as obscured and vignetted apertures.  In addition, these methods are generalized for square 
fields, and for integrating performance over arbitrary wavelength bands.  Integration over wavelength is aided by the use 
of a novel chromatic coordinate.  These quadratures achieve low calculations with fewer rays (by orders of magnitude) 
than uniform sampling schemes. 
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1. INTRODUCTION  
Efficient numerical ray-tracing made a great step forward with Forbes’ paper in 19881, which introduced the use of 
Gaussian quadrature (GQ) in calculating root-mean-square (rms) spot size for an optical design.  For example, ray-
tracing methods based on Gaussian Quadrature use knowledge about the maximum order of the aberration in choosing 
an efficient set of rays, which produce results that are numerically equivalent to those obtained through a direct 
integration across the entire pupil.  See Figure 1 for an example of a GQ ray set. 

Gaussian quadrature as discussed in Forbes’ paper is applicable to filled, circular apertures, and to elliptical apertures 
with a small change—these are the most commonly encountered cases in optical design.  Often, GQ will still work as a 
merit function when optimizing an optical system with modest obscuration or vignetting.  However, certain systems 
depart significantly from these cases, among which is the Large Synoptic Survey Telescope (LSST)2; see figure 2.  

 
Figure 1: (left) 12x12  uniform grid of rays on a circular pupil; (right) 3-ring, 6-spoke pattern derived from a Gaussian 
quadrature.  The normalized radii are 0.3535, 0.7071, and 0.9420.  The GQ ray set has 1/5 as many rays and performs far 
better. 

LSST uses a modified Paul-Baker design, which has 3 mirrors.  The primary and tertiary are fabricated out of a single 
substrate so that they are permanently aligned; this approach was also seen in Rumsey.3 LSST has a large central 



obscuration—about 62% obscuration by diameter.  There is also considerable vignetting (of up to 10% by area) when 
comparing the vignetting at the center of the field versus the edge of the field.  These cases are not handled well by the 
techniques in Forbes’s paper. As a result, these cases are often evaluated with large uniform grids of rays, resulting in 
analysis and optimization that are orders of magnitudes slower than comparable GQ ray sets.  In this paper, GQ will be 
extended to annular as well as vignetted pupils.   

Forbes’ paper also discusses the application of GQ to the integration of performance parameters across a circular field, 
and across a wavelength band.  However, these applications have been less commonly used. On the other hand, 
improvement of this kind is available in optimizing most optical designs, and benefits significantly systems such as 
LSST. Thus, we will discuss these methods in this paper. 

 
Figure 2:  Layout of LSST, with the refractive elements highlighted on the right. 

2.  GAUSSIAN QUADRATURE ON THE PUPIL 
 

2.1 Gaussian quadrature in one dimension 

A quadrature formula is a weighted sum of the values of a function, say ( )f x , at a relatively small number of points 
which is equal to the integral I of the function on a certain domain (which is typically chosen to be [-1,1] in one 
dimension).  In other words, 

  (1) 

where ( )f x is the integrand, ( )xω is a weight function, xi are called the nodes, and wi are called the weights. Typically, 
quadratures are designed to integrate a pre-selected class of functions accurately, with common choices of functions 
including polynomials, trigonometric functions, etc.  In this paper, we’ll use ( ) 1xω = as a common, concrete example.  

Gaussian quadratures are a classical formula that is optimal in that in one dimension, an n point Gaussian quadratures 
can integrate the 2n-1 functions accurately, and no other quadratures can integrate the same functions with n-1 points. 
When is uniform and the interval is [-1,1], then the nodes of the n-point Gaussian quadrature are the roots of the n-
th Legendre polynomial.  For example, a 5th order polynomial can be integrated by evaluating by the 3-point quadrature 
whose nodes are:  { }3 5,0, 3 5iL = − +  with corresponding weights { }5 9,8 9,5 9iw = . 

In practice, we frequently need to change the integration interval from [-1,1] to [a,b]. This can be easily accomplished by 
scaling and shifting.4  In particular, to convert a tabulated set of sampling points on [-1,1] to an interval [a,b], we note 
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that the length of the domain in the first case is 2, and the interval in the second case is b-a.  Thus, each node should be 
scaled by a factor of (b-a)/2, and then shifted by (a+b)/2 to map the center of the [-1,1] interval onto the center of the 
[a,b] interval.  Similarly, each weight should be scaled by (b-a)/2 in order for the quadrature to integrate correctly the 
constant on the scaled interval.  The corresponding transformations can be written as: 

  (2) 

with Li, wi denoting the nodes and weights for the original interval, and ,i iL w′ ′  the nodes and weights for the interval 

[a,b]. The factor in the weight equation can also be viewed as the derivative , where , 

which is the variable substitution (used in Section 6 below); this derivative is sometimes referred to as a Jacobian.  In 
one dimension, Gaussian quadratures are unique for a given set of functions (not necessarily polynomials).4  We note 
that there is an overall scaling factor between weights presented here and those used in commercial lens design codes.  
For purposes of a merit function, this difference produces no effect since weights are normalized.  

2.2 Gaussian quadrature on the circular aperture 

As is well known, the aberration functions we are interested in for integration across the aperture are separable in polar 
coordinates: the radial parameter ρ and the angular parameter θ.  A typical basis of these functions are the so-called 
Zernike polynomials, which are of the form of R(ρ) cos(mθ) or R(ρ) sin(mθ), where R(ρ) is a polynomial in ρ of degree 
up to m.   

We then build a “tensor product quadrature rule” based on the one-dimensional Gaussian quadrature in the radial 
direction and a uniform sampling quadrature in the angular direction. Since the integrands of interest in the angular 
direction are of the form cos(nθ) and sin(nθ) with integer n <= m, a maximum of m+1 evenly sampled angles should 
suffice.5  Similarly, a Gaussian quadrature of k nodes integrates accurately all monomials up to the (2k-1)-th order.  
Thus, the annular tensor product rule that integrates all Zernike polynomials of degrees up to m requires a total of 
(m+1)*(m+1)/2 nodes.   

For the circular aperture, there are two ways to apply the one dimensional Gaussian quadratures in the tensor product. In 
reference 1, the Legendre roots  are applied to the quantity ρ2 (which can be thought of as a fractional area f integrated 
from the center of the pupil to a normalized radius ρ), due to the lack of terms involving ρ2k+1 for non-negative integer k.  
This transformation of the Gaussian quadrature can be written as, 

  (3) 

  
Thus, for a 3-ring case on the circular aperture, the sampled radii and corresponding weights are:   

 ( ) ( ){ } { }

{ }

1 3 5 2  1 2,  1 3 5 2 0.3357,0.7071,0.9420

5 9,8 9,5 9i

i
w

ρ = − + =

=
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We note that the weights of the resulting quadrature remain symmetric in the radial direction.   

In the second approach, one applies directly the Gaussian quadrature in the radial direction via scaling and shifting of the 
Legendre roots (see equation (2)).  However, in order for the quadrature to be applicable in the polar coordinate, all 
weights corresponding to nodes in the same ring need to be multiplied by the radius of that ring.  The resulting 
quadrature have sampled radii that are symmetric about the average radius ((1+a)/2), and non-symmetric weights in the 
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same direction.  For sampling the disk with 3 rings, the radii of the sampled nodes and the corresponding weights under 
this method become 

 
( ) ( ) ( ){ } { }

{ } { } { }
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This approach, however, does not take advantage of the lack of odd radial terms in the integrand and so is not as efficient 
as the method in equation 4. 

2.3 Gaussian quadrature on an annular pupil 

For the annular case, the sampling radii ρi can be found similarly. Suppose that the inner radius of the annulus is a 
(0<a<1), in which case ρ now lives on the interval [a,1], as opposed to [0,1] as in the circular case.  The fractional area 
(cf. section 2.2) still lives on [0,1] and this is the variable to which the Legendre GQ roots will be applied.  Thus, the 
fraction of the area from a to the radius ρi to that of the annulus is given by ( ) ( )2 2 2 21i if a aρ= − − .  Therefore, we can 
find the sampling radii through the equation 
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For example, if a = 0.5 (or 50% obscuration by diameter), then the sampling radii for the 3-ring case are 

( ) ( ) { }2 21 (1 ) 2 5 3 8 0.5784, 0.7905, 0.9568i i ia L a Lρ = + + − = + = , with the weights being the same as those 

for the one-dimensional case: { }5 18,8 18,5 18wi = . 

As in section 3, one can also apply a Gaussian quadrature on the annulus by using scaled-and-shifted Legendre roots 
as the radii, and then multiplying the weights for each ring by the radius of that ring. Again, the resulting quadrature is 
symmetric in ring radii about the average radius ((1+a)/2), and the corresponding weights are not symmetric: 

  (7) 

Figure 3 shows the performance of a quadrature on an annular pupil for LSST vs. a uniform grid.  LSST’s optics contain 
8th order aspheres, which is why several rings are needed.  As can be seen, the performance improvement over a uniform 
grid is similar to that for the circular-aperture case. 

 
Figure 3:  Relative error vs. number of rays traced for LSST annular pupil.  To isolate effects due to pupil sampling, rays 
were traced for a near-axis field and single wavelength only. 
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  (8) 

and applying GQ to the Buchdahl chromatic coordinate.  This produces a better fit, but only over a fairly limited range.  
Buchdahl7 and Forbes found that with λ0=0.589μ, α=2.5 worked reasonably well for λ=0.4-0.7μ, but Chipman8 found 
that α=1.5 worked better for λ=0.7-0.9μ (note that the selection of λ0 is arbitrary).  Robb used α=2.5, but added more 
terms to extend to about 1μ.9 The lack of generality in these results suggests that a different variable substitution is called 
for.  Further, a more flexible method would be useful so that designers can more easily set up a variable substitution that 
is more appropriate for their specific application.  

Perhaps the most commonly-used formula for the refractive index is the Sellmeier equation, which is based on a theory 
of resonances:10 

  (9) 

where each term represents the effect of an absorption line: the λi’s represent the absorption wavelengths and the Ai’s 
represent the strengths of the absorption lines; typically, there are 3 terms.  An inspection of this equation indicates that 
polynomials in λ or 1/λ are not good fits for this equation except for a very limited wavelength range.  Upon further 
reflection, one sees a trigonometric substitution may be fruitful:   

 
 
Using j to refer to absorption lines blueward of the desired wavelength range, and k to refer to absorption lines 

redward of the desired wavelength range, the Sellmeier equation can be rewritten as: 

  (10) 

The angles θi are not angles in any physical sense—they merely allow the use of the aforementioned PWSF GQ 
constructs for trigonometric functions.  For a typical glass, the 3-term Sellmeier equation uses λi≈0.1μ, 0.2μ, 10μ.  For a 
range of λ=0.4-0.7μ, the corresponding “angles” ranges are 0.14-0.25, 0.28-0.5, and 0.04-0.07 radians.  With some 
additional algebra, one can express the angles θ2 and θ3 in terms of θ1 and derive an expression for index with low orders 
of trigonometric functions of θ1.  The point is not to derive that expression, but to show that the θ1 substitution makes 
sense, because making that substitution allows us to avail ourselves of known methods of GQ for trigonometric 
integrands, as shown below.  It is perhaps a bit arbitrary that the expression is taken in terms of θ1 rather than the other 
angles, but it is justified by the fact that the λ=0.1μ absorption line usually has the strongest effect on the refractive index 
in the visible and near-IR bands. 

Of course, this is only an expression for the refractive index.  We are interested in an rms spot size for the lens, which 
would involve complicated formulas involving the refractive index, even if we could write it analytically  (also, 
expression is in n2 not n). As mentioned earlier, it is perhaps not even necessary to calculate the spot size accurately as 

( )
0

01
λ λ

ω
α λ λ
−

=
+ −

2
2

2 21 i
i i

n A λ
λ λ

− =
−∑

 

  

 

   

 

for iλ λ>
2 2

2

sin

cos

i
i

i
i

λθ
λ
λ λ

θ
λ

=

−
=

for iλ λ<
2

2 2

sin

tan

i
i

i
i

λθ
λ

λθ
λ λ

=

=
−

λi λ 

 2 2
iλ λ−

θi 

λ
λi 

2 2
iλ λ−

θi 

2 2
21 tan

cos

sin
where  

sin

j
k k

j kj

j
j

k
k

A
n A θ

θ

λ
θ

λ
λθ
λ

− = +

⎧
=⎪⎪

⎨
⎪ =
⎪⎩

∑ ∑



long as the calculated quantity can act as a merit function of the lens.  The idea is that the proper selection of 
wavelengths and weights reduces the “toothpaste tube” effect, and this approach is more sensible than a uniform spacing 
of wavelengths or ad hoc fiddling of wavelengths and weights.  A more thorough study of the effectiveness of the 
method is beyond the scope of this introductory paper and is planned for future work. 

For the present time, it will suffice to see if this approach predicts average spot size over a wavelength range more 
efficiently than a uniform sampling of wavelengths for a few sample cases. 

As mentioned above, trigonometric integrands are non-trivial for domains which do not span an integral number of 
periods, and a method for the integration of these functions using prolate spheroidal wavefunctions have been 
developed.6  The table in the Appendix shows a table of PWSF quadratures over a domain of [-1,1] (note the quadratures 
are symmetric about x=0).  In order to apply these to our situation, we will need to rescale these coordinates as in 
equation (2) and as above, the weights will be modified by the Jacobian, i.e.,   

   (11) 

and then normalized, as necessary for the task at hand. 

As an example, we can generate a 4-wavelength quadrature with a wavelength range of [0.4,0.7μ] and λ=0.1μ.  Flipping 

the wavelength range for convenience, the range of θ1 is then , which is [0.1433,0.2527] 

in radians.  This is now the domain [a,b] that [-1,1] is mapped onto via equation 2. The θ’s can then be transformed back 
into wavelengths for use in the optical design code. 

The resulting GQ wavelengths and weights are given in Table 2, alongside the values from Forbes’ paper, showing very 
good agreement.  Note that the wavelength nodes are clustered towards the blue end of the spectrum and are more sparse 
at the red end.  This is generally true when using GQ on wavelength and makes sense because the index changes more 
rapidly towards the blue end, requiring a denser set of nodes there to maintain control of the performance.  

 

Table 2:  4-point quadrature for λ=0.4μ-0.7μ using the techniques in this paper.  Li and wi are the “raw” nodes and weights 
from the table in the Appendix.  L’i and w’i are after the variable substitution to θ.  The final nodes and weights to be used 
are in the shaded columns.  Forbes’ values for the same case are also given; the results are very similar.  Note that the 
weighting is normalized so that the sum of the weights equals the wavelength range (0.3); this is to allow comparison to 
Forbes’ table. 

Li Li’=θi λi λi 
(Forbes)  wi wi’ 

wi’ 
(Forbes) 

-0.845401980 0.24423 0.41355μ 0.410836μ  0.375765873 0.03409 0.028202 

-0.321309809 0.21558 0.46748μ 0.460136μ  0.624160603 0.072855 0.071776 

0.321309809 0.18045 0.55719μ 0.554033μ  0.624160603 0.104232 0.112203 

0.845401980 0.15180 0.66130μ 0.662979μ  0.375765873 0.088818 0.087820 

 
The difference here, though, is that the present method can be used over a broader and user-selected wavelength range, 
rather than just the specific ranges covered in the literature.  To illustrate, we consider 3 variations of a 
F2/KzFSN5/FK51 f/10 triplet, with each version optimized mildly for 3 different wavelength intervals:  0.4-1.5 microns, 
0.4-1.8 microns, 0.4-2.2 microns.   A typical rms spot size vs. wavelength curve is illustrated in figure 5, showing a 
number of oscillations in performance over the wavelength range.  It is this curve that we wish to integrate in a root-
mean-square sense. 

For wavelengths longer than about 1.5μ, the effect of the infrared absorption line starts becoming significant: there is 
often an inflection in the dispersion curve around 1.5-1.8μ.  The simple substitution using λ1=0.1μ becomes less 
effective, and either more wavelength nodes or a slightly different variable substitution is called for. 
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Currently, we have implemented this approach only for typical glasses such as those found in the Schott or Ohara 
catalogs.  The approach works because all these glasses are very similar in that they have their principal absorption at 
around 0.1μ.  We have not yet tried the technique with other media, such as infrared materials, or with catalogs of more 
dissimilar materials.  This is clearly an area of future effort. 

  
Figure 5:  (left)  rms spot size versus wavelength over a range of 0.4-1.5μ; note the high order of the wavelength 
dependency, as evidenced by the number of oscillations; (right) shows that this simple Gaussian quadrature scheme in 
wavelength produces results that are orders of magnitude more accurate than that produce by uniform sampling of 
wavelength.  Comparing the three GQ curves, we see that as bands go further into the infrared, the convergence becomes 
slower.  This is due to the effect of the infrared absorption line, which becomes increasingly important.  However, the 
method still works remarkably well. 

 

4. GAUSSIAN QUADRATURE ON THE FIELD 
4.1  GQ on a circular field 

Forbes applies GQ to integrating performance across a circular field.  Mathematically, this is identical to the notion of 
integrating across a circular pupil, and so GQ works in exactly the same way.  The field-dependence of the rms spot size 
is not always of the same order as the pupil-dependence, and it can be higher-order or lower-order than the pupil 
dependence.  For LSST, the orders are about the same.  The relevant merit function (MF) is the rms spot size, averaged 
across the field where every field point is equally important, and this is well-suited to Legendre-based GQ.  Forbes 
discusses a common scenario where the performance is more important in the center of the field and he describes a 
fourth-order weighting.  There is no fundamental difference in these two cases—GQ still applies and only the sampling 
points and their weights change.   

4.2  GQ on a rectangular field 

For a rectangular field with uniform weighting, an efficient Gaussian-like quadrature is available.11 Figure 5 shows the 
field points for a square field for a 10-point and a 16-point sampling scheme.  The precise field values and weights are 
shown in Table 4.  The 10-point scheme is appropriate for a system whose field dependence is described by a 6th order 
polynomial and the 16-point scheme is appropriate for a system whose field dependence is described by a 8th order 
polynomial.  LSST is used as an example, except with a square field assumed; figure 6 shows the rms spot size vs. field 
position, and some of the high-order field dependence is evident (arising from the 8th-order aspheres).  Figure 6 shows 
that the performance of a 16-point Gaussian quadrature scheme is equal to a uniform field sample with 1000 times as 
many field points. 
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CONCLUSIONS AND FUTURE WORK 

We have demonstrated extensions to Forbes’ Gaussian Quadrature theory for annular and vignetted pupils, for square 
fields.  In addition, we have used a new chromatic coordinate transformation that allows GQ to be applied over large and 
user-selectable wavelength ranges.  In all cases, the performance of these GQ methods is orders of magnitude better than 
uniform sampling techniques, as we have come to expect from GQ.  

Future work will include easy-to-implement GQ for arbitrary pupil and field shapes, and with different weightings.  
Currently, it is known how to do GQ for polygonal areas, but these are not necessarily easy to implement for optical 
designers.  In addition, it would be useful to have GQ for other curved-boundary pupil shapes.  In GQ over wavelength 
bands, there is much work ahead to assess the effectiveness of this method over a variety of design conditions, and to 
extend the method to include infrared glasses and other materials that are not similar to standard glasses,  Further, effort 
will be required to evaluate the effectiveness of the approaches to wavelengths where the infrared absorption line is 
significantly impacting performance. 

APPENDIX:  PROLATE SPHEROIDAL WAVE FUNCTIONS 

Prolate Spheroidal Wave Functions is a class of special functions that are solutions to a certain second order ordinary 
differential equations.  They are also eigenfunctions of the Fourier integral operator on a finite interval: corresponding to 
the maximum eigenvalue of the sinc operator: 

 (12) 

For each positive value of , there is a corresponding family of real-valued, band-limited functions that  

satisfy the integral equation (14), and  possess a number of mathematical properties, of which the most 

interesting to our applications is that they form a basis for all functions that have finite integrals on the interval, say [-1, 
1]. Denoting the Fourier transform of the m-th function by , we summarize the relevant properties as follows.  
The reader is referred to reference 4 for more details. 

 
P0:   are infinitely differentiable on the entire real line. 

P1:   are orthonormal and complete in , where   is the Kronecker 
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P2: are orthogonal and complete in .  Thus the energy of  in 
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P3: is even when m  is even and is odd when m is odd. 

P4:  Among functions in , the highest possible energy concentration of their Fourier transforms in 

  is , and is achieved by . 

P5: For each positive integer n, the Fourier transform of achieves the highest energy concentration in 

among all functions in that are orthogonal to the linear space spanned by . In addition, the 
energy concentration decays exponentially as increases for all sufficiently large. 
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Due to P5 and the orthogonality of the first m PSWFs, we can show that a quadrature with nodes being the roots of  
can integrate all functions in the linear space spanned .  In addition, with the proper selection of c, the 

band-width parameter of the PSWFs, the quadrature integrates all functions in  on  to an 
accuracy of  O( +1 ).

6 

 

# nodes x w # nodes x w # nodes x w 
2 ±0.548740 1.000000 

12 

±0.975160 0.062711

24 

±0.990452 0.024131

4 
±0.845402 0.375766 ±0.877091 0.129518 ±0.952560 0.050243

±0.321310 0.624161 ±0.723945 0.173273 ±0.892796 0.068018

6 

±0.921217 0.195692 ±0.536367 0.199530 ±0.818612 0.079522

±0.630684 0.366352 ±0.328719 0.214196 ±0.735062 0.087067

±0.221711 0.437953 ±0.110649 0.220772 ±0.645288 0.092162

8 

±0.955279 0.113001 

16 

±0.984206 0.039983 ±0.551255 0.095693

±0.778290 0.233792 ±0.921085 0.084077 ±0.454251 0.098173

±0.503061 0.309230 ±0.820587 0.114817 ±0.355157 0.099909

±0.173384 0.343977 ±0.695031 0.134825 ±0.254617 0.101088

10 

±0.966472 0.084406 ±0.553324 0.147627 ±0.153129 0.101821

±0.835720 0.171228 ±0.401351 0.155671 ±0.051101 0.102174

±0.635361 0.224559 ±0.243079 0.160402

±0.394673 0.253567 ±0.081388 0.162598

±0.133622 0.266240   
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